
LR(0) Grammars 



The starting point for LR(0) grammars is weak precedence 
grammars, extended to include the rule 
 S' ::= S EOF 
where S is the start rule.  We will also include a new stack symbol, 
$, denoting the bottom of the stack.  We will do several examples 
with the following simple grammar: 
 
 (P1):  S' ::= S EOF L(S')={S,a,d} R(S')={EOF} 
 (P2):  S ::= aSb  L(S)={a,d} R(S)={b,c} 
 (P3):  S ::= aSc 
 (P4):  S ::= db 



This grammar has the  following precedence table: 
 
  a b c d S EOF 

a < < = 

b > > > 

c > > > 

d = 

S = = = 

$ < < < 

Note that this makes Table[$, y] = "<" for any y in L(S'), for these 
are the only symbols that could be pushed onto an empty stack.   



LR(0) grammar write this table as 

a b c d S EOF 

a sh sh sh 

b red red red 

c red red red 

d sh 

S sh sh acc 

$ sh sh sh 

where the table entries are 
 sh for "shift" 
 red for "reduce" 
and acc for "accept" 



Remember that our grammar is 
 (P1):  S' ::= S EOF L(S')={S,a,d} R(S')={EOF} 
 (P2):  S ::= aSb  L(S)={a,d} R(S)={b,c} 
 (P3):  S ::= aSc 
 (P4):  S ::= db 
 
Note that if we reduce with b on top of the stack it could only come 
from (P2) or (P4).  When we shift that b onto the stack, if it goes on 
top of an S we could shift b2; if on top of a d we could shift b4.   



 (P1):  S' ::= S EOF L(S')={S,a,d} R(S')={EOF} 
 (P2):  S ::= aSb  L(S)={a,d} R(S)={b,c} 
 (P3):  S ::= aSc 
 (P4):  S ::= db 
 
Note also that there could be two kinds of S values to push on the 
stack.  If we push an S onto an empty stack, we only need the EOF 
token to accept the input string.  We will call S in this case a 
"satisfied S", or Ss.   If we push an S onto a non-empty stack we will 
call it an "unsatisfied S", or Su.  In this way our stack tokens can tell 
us something about what is on the stack below them. 



Our action table is now: 
 

a b c d S EOF 

a sh a sh d sh Su 

b2 red 
P2 

red 
P2 

red 
P2 

b4 red 
P4 

red 
P4 

red 
P4 

c red 
P3 

red 
P3 

red 
P3 

d sh b4 

Su sh b2 sh c 

Ss acc 

$ sh a sh d sh Ss 



Note that we could encode the action table as a DFA. The terminal 
states do reductions. 

This automaton has all of the information of the table with one 
exception -- it does reductions without checking that the next 
token is appropriate.  This is okay, because the error will be 
detected before the next token is shifted onto the stack. 



Building the LR(0) Action Table 

We will usually reverse the steps of the last example. Instead 
of producing a DFA from the action table, we will have an 
algorithm that produces a DFA from the grammar, and we will 
use this DFA to derive the action table that we actually use in 
parsing. 



Def.  An LR(0) item is a grammar rule with a dot on the right-hand 
side, as in [A ::= X.Y].  The item [A ::= X.Y] means that we have 
seen X and are expecting Y to allow a reduction to A. 
 
Each state of our DFA wil consist of a collection of LR(0) items. 
 
To find the states of the DFA, begin with the item [S' ::= .S EOF], 
where S is the start state.  For any item in a state with the dot 
preceding a non-terminal symbol, as in [A ::= a.Bb], we add in all 
of the items with that non-terminal on the left, as in [B ::= .c] 
If a state has the item [A ::= a.xb] we draw an edge labeled x to 
the state containing [A ::= ax.b]  If this leaves the dot before a 
non-terminal we expand the new state to include all of the items 
derived from that non-terminal. 
 



Here is the DFA we get for our grammar 
 (P1):  S' ::= S EOF 
 (P2):  S ::= aSb   
 (P3):  S ::= aSc 
 (P4):  S ::= db 



Note that in our DFA we have numbered the states so we have a 
way to refer to them. 
 
We will modify our action table so the rows are indexed by 
states; the columns will still be indexed by terminal and non-
terminal symbols. 
 
An edge in the DFA from state i: [A::=a.xb] to state j: [A::=ax.b] is 
represented in the table by Table[i,x] = sh j  (shift x, enter state j). 
 
A reduction state for rule Pk: [A::=a.] is represented in the table 
by Table[i,x]= red k for every x.   



This gives the following action table: 

a b c d S' S EOF 

0 sh 5 sh 3 sh 1 

1 sh 2 

2 acc acc acc acc acc acc acc 

3 sh 4 

4 red 4 red 4 red 4 red 4 red 4 red 4 red 4 

5 sh 5 sh 3 sh 6 

6 sh 7 sh 8 

7 red 2 red 2 red 2 red 2 red 2 red 2 red 2 

8 red 3 red 3 red 3 red 3 red 3 red 3 red 3 

To use such a table, start in state 0.  On each shift push the 
new state (from the table) on top of the shifted symbol.  On a 
reduction pop the symbols off the stack and use the 
uncovered state along with the symbol being pushed to 
determine the new state to enter. 


